Abstract

The virial theorem is a nice property for the linear Schrodinger equation in atomic and molecular physics as it gives an elegant ratio between the kinetic and potential energies and is useful in assessing the quality of numerically computed eigenvalues. If the governing equation is a nonlinear Schrodinger equation with power-law nonlinearity, then a similar ratio can be obtained but there seems to be no way of getting any eigenvalue estimates. It is surprising as far as we are concerned that when the nonlinearity is either square-root or saturable nonlinearity (not a power-law), one can develop a virial theorem and eigenvalue estimates of nonlinear Schrodinger (NLS) equations in $${{\mathbb {R}}^{2}}$$ with square-root and saturable nonlinearity, respectively. Furthermore, we show here that the eigenvalue estimates can be used to obtain the 2nd order term (which is of order $$\ln \Gamma $$ ) of the lower bound of the ground state energy as the coefficient $$\Gamma $$ of the nonlinear term tends to infinity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.