Abstract

The rice virescent-2 mutant (v(2)) is temperature conditional and develops chlorotic, chloroplast-deficient leaves at the restrictive temperature. In the v(2) mutant, plastid-encoded proteins involved in photosynthesis and plastid transcriptional regulation were not detectable at any time during chloroplast differentiation. However, the plastid transcripts for these two classes of proteins behaved differently in the mutant, with those for the plastid transcription/translation apparatus accumulating to wild-type levels and those for photosynthetic apparatus being suppressed. Polysome analysis showed that translation of the plastid transcripts encoding the plastid transcription/translation apparatus was blocked at an early stage of chloroplast differentiation. Accumulation of transcripts of nuclear-encoded photosynthetic genes, such as cab and rbcS, was strongly suppressed in the mutant at later stages of chloroplast differentiation, whereas transcripts of genes for the plastid transcription apparatus, such as OsRpoTp and OsSIG2A, accumulated to abnormally high levels at these stages. These results suggest that activation of the plastid translation machinery at an early stage of chloroplast differentiation is important for triggering the transmission of information about plastid developmental state to the nucleus, which in turn is required for the induction of nuclear-encoded chloroplast proteins at later stages of chloroplast differentiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.