Abstract

Polyvinyl alcohol (PVA) polymer, methyl orange (MO) and their composite was dissolved in water in order to prepare films with different thickness by casting method. The films were irradiated by a violet laser with a wavelength 405 nm for different times (0, 10, 20, 30 and 40) minute. The dispersion parameters were calculated before and after exposure to the laser using the Wemple–DiDomenico method. Dispersion energy (E d) and the single oscillator energy of electronic transition (E o) were increased with increasing the irradiating time for PVA, MO and PVA/MO thick films. This is useful to modify geometrical and optical specifications for materials which has many applications especially in the medical field. The Urbach energy also can be controlled by the irradiation times since it decreased with increasing the laser irradiation time which can be used to enhance the structure of the material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.