Abstract

N2,3-Ethenoguanine (N2,3-epsilon G) was recently identified in the liver of vinyl chloride-exposed rats. We have now synthesized the nucleoside and the 5'-diphosphate which was copolymerized with CDP. The deoxypolynucleotide complement, synthesized by AMV reverse transcriptase contained, in addition to dG, dC and dT. The total pyrimidine content was approximately equivalent to the N2,3-epsilon G content of the template. Incorporation of dC is neither lethal nor mutagenic, while dT incorporation represents a mutagenic event, occurring with approximately 20% frequency. N2,3-epsilon G X dT base pairs can have two hydrogen bonds with minimal helical distortion, as is also the case for N2,3-epsilon G X C base pairs. N2,3-epsilon G is the only derivative formed in vivo by the human carcinogen, vinyl chloride, that can be shown to have a high probability of causing transitions which could initiate malignant transformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call