Abstract
Vineyards harbour a wide variety of microorganisms that play a pivotal role in pre- and post-harvest grape quality and will contribute significantly to the final aromatic properties of wine. The aim of the current study was to investigate the spatial distribution of microbial communities within and between individual vineyard management units. For the first time in such a study, we applied the Theory of Sampling (TOS) to sample gapes from adjacent and well established commercial vineyards within the same terroir unit and from several sampling points within each individual vineyard. Cultivation-based and molecular data sets were generated to capture the spatial heterogeneity in microbial populations within and between vineyards and analysed with novel mixed-model networks, which combine sample correlations and microbial community distribution probabilities. The data demonstrate that farming systems have a significant impact on fungal diversity but more importantly that there is significant species heterogeneity between samples in the same vineyard. Cultivation-based methods confirmed that while the same oxidative yeast species dominated in all vineyards, the least treated vineyard displayed significantly higher species richness, including many yeasts with biocontrol potential. The cultivatable yeast population was not fully representative of the more complex populations seen with molecular methods, and only the molecular data allowed discrimination amongst farming practices with multivariate and network analysis methods. Importantly, yeast species distribution is subject to significant intra-vineyard spatial fluctuations and the frequently reported heterogeneity of tank samples of grapes harvested from single vineyards at the same stage of ripeness might therefore, at least in part, be due to the differing microbiota in different sections of the vineyard.
Highlights
Vineyards and grape berry surfaces provide a physical environment on which complex microbial communities comprising yeasts, bacteria and filamentous fungi establish themselves
The total yeast population ranged from 4–86104 CFU/g on all vineyards, and the enumeration of cultivable population revealed no significant differences between the farming systems (P = 0,225)
The current study evaluated the impact of farming systems viz. conventional, integrated and biodynamic viticultural practices on grape associated yeast diversity
Summary
Vineyards and grape berry surfaces provide a physical environment on which complex microbial communities comprising yeasts, bacteria and filamentous fungi establish themselves. The oxidative ascomycetous yeasts (e.g. Candida spp., Pichia spp., and Metschnikowia spp.), and the fermentative ascomycetous yeasts (e.g. Hanseniaspora/Kloeckera spp.) have been found to be present at low concentrations on undamaged berries and appear often localized in those areas of the grape surface where some juice might escape [6,7]. The incidence of these yeasts on damaged grapes increases rapidly and 10 fold increases have been reported [5,7]. The most relevant fermentative wine yeast, Saccharomyces cerevisiae only occurs at concentrations of less than 10–100 cfu/g berry [8]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.