Abstract

We use the full VIPERS redshift survey in combination with SDSS-DR7 to explore the relationships between star-formation history (using d4000), stellar mass and galaxy structure, and how these relationships have evolved since z~1. We trace the extents and evolutions of both the blue cloud and red sequence, by fitting double Gaussians to the d4000 distribution of galaxies in narrow stellar mass bins, for four redshift intervals over 0<z<1. This reveals downsizing in star formation, as the high-mass limit of the blue cloud retreats steadily with time from M*~10^11.2 M_sun at z~0.9 to M*~10^10.7 M_sun by the present day. The number density of massive blue-cloud galaxies (M*>10^11 M_sun, d4000<1.55) drops sharply by a factor five between z~0.8 and z~0.5. These galaxies are becoming quiescent at a rate that largely matches the increase in the numbers of massive passive galaxies seen over this period. We examine the size-mass relation of blue cloud galaxies, finding that its high-mass boundary runs along lines of constant M*/r_e or equivalently inferred velocity dispersion. Larger galaxies can continue to form stars to higher stellar masses than smaller galaxies. As blue cloud galaxies approach this high-mass limit, they start to be quenched, their d4000 values increasing to push them towards the green valley. In parallel, their structures change, showing higher Sersic indices and central stellar mass densities. For these galaxies, bulge growth is necessary for them to reach the high-mass limit of the blue cloud and be quenched by internal mechanisms. The blue cloud galaxies that are being quenched at z~0.8 lie along the same size-mass relation as present day quiescent galaxies, and seem the likely progenitors of today's S0s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.