Abstract

We introduce a new method for stacking voids and deriving their profile that greatly increases the potential of voids as a tool for precision cosmology. Given that voids are distinctly non-spherical and have most of their mass at their edge, voids are better described relative to their boundary rather than relative to their centre, as in the conventional spherical stacking approach. The boundary profile is obtained by computing the distance of each volume element from the void boundary. Voids can then be stacked and their profiles computed as a function of this boundary distance. This approach enhances the weak lensing signal of voids, both shear and convergence, by a factor of 2 when compared to the spherical stacking method. It also results in steeper void density profiles that are characterized by a very slow rise inside the void and a pronounced density ridge at the void boundary. The resulting boundary density profile is self-similar when rescaled by the thickness of the density ridge, implying that the average rescaled profile is independent of void size. The boundary velocity profile is characterized by outflows in the inner regions whose amplitude scales with void size, and by a strong inflow into the filaments and walls delimiting the void. This new picture enables a straightforward discrimination between collapsing and expanding voids both for individual objects as well as for stacked samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.