Abstract

Simulations of a chemical kinetics model, based on the free-energy relationships of classical primary nucleation theory, show that the deracemization phenomenon in systems of achiral or fast racemizing compounds yielding enantiopure crystals as the more stable solid phase is a true spontaneous mirror symmetry breaking process (SMSB). That is, the achievement of a stationary chiral state is more stable than the racemic one. The model translates the free-energy relationships determined by the existence of a critical size cluster to a chemical kinetics model, in which the consideration of forward and backward reaction rate constants avoids the misuse of network parameters that violate thermodynamic constraints (microreversibility principle), which would lead to apparent in silico SMSB. The model provides qualitative agreement for deracemizations by mechanical attrition of visible crystals, as well as for those obtained under temperature gradients. The analysis of the effect of the system parameters to obtain a SMSB scenario shows that the network possesses the principal characteristics of SMSB networks: 1) an enantioselective autocatalytic stage, corresponding to the non-linear kinetics of enantioselective (homochiral) cluster-to-cluster growth, and 2) the mutual inhibition step originating in the backward flow of chiral clusters towards smaller achiral clusters, or even to a racemizing monomer. The application of such a SMSB kinetic model to enantioselective polymerizations and to chiral biopolymers is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.