Abstract
The heat capacities of two samples of a fcc Cu–Zn alloy with the composition CuZn15 and CuZn34 were measured from T=5K to 573K using relaxation and differential scanning calorimetry. Below ∼90K, they are characterised by negative excess heat capacities deviating from ideal mixing by up to −0.20 and −0.44J·mol−1·K−1 for CuZn15 and CuZn34, respectively. The excess heat capacities produce excess vibrational entropies, which are less negative compared to the excess entropy available from the literature. Since the literature entropy data contain both, the configurational and the vibrational part of the entropy, the difference is attributed to the excess configurational entropy. The thermodynamics of different short-range ordered samples was also investigated. The extent of the short-range order had no influence on the heat capacity below T=300K. Above T=300K, where the ordering changed during the measurement, the heat capacity depended strongly on the thermal history of the samples. From these data, the heat and entropy of ordering was calculated. The results on the vibrational entropy of this study were also used to test a relationship for estimating the excess vibrational entropy of mixing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.