Abstract
A hybrid method for investigating pulsatile fluid flow in a long, thin, artery-like tube subjected to external excitations is presented. The non-linear partial differential equations governing the motion of the system, which incorporate the influence of circumferential strains, are solved by a combination of a finite element method, a finite difference method and a method of characteristics with interpolation. An initially axially stretched elastic tube conveying pulsating fluid, simply supported at both ends, is modelled to assess the effect of external harmonic excitation on the dynamic responses of the tube and the fluid flow. The results agree well with new experimental data. Comparison of the predicted results with those of a decoupled model demonstrates that it is necessary to consider the mechanism of fluid-structure interaction fully in the study of initially stretched cylindrical tubes conveying pulsatile fluid flow. An analysis of these coupling effects is presented for Womersley numbers alpha = 2.81 and 3.97 and a mean flow Reynolds number Re = 875.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.