Abstract

The role of the dormant-like viable but nonculturable (VBNC) condition in the etiology of bacterial infection was examined using a plant system. The plant-pathogenic bacterium Ralstonia solanacearum was first shown to enter into the VBNC state both in response to cupric sulfate when in a saline solution and when placed in autoclaved soil. To determine if the VBNC condition is related to pathogenesis, the physiological status of bacteria recovered from different regions of inoculated tomato plants was determined at different stages of infection. The fraction of in planta bacteria that were VBNC increased during infection and became greater than 99% by the late stage of disease. The possibility that soil-dwelling VBNC bacteria may resuscitate and infect plants was also examined. When tomato seeds were germinated in sterile soil that contained VBNC but no detectable culturable forms of R. solanacearum cells, resuscitation was observed to occur in soil adjacent to plant roots; these resuscitated bacteria were able to infect plants. This is the first report of R. solanacearum entering the VBNC state and of resuscitation of any VBNC plant-pathogenic bacteria and provides evidence that the VBNC state may be involved in explaining the persistent nature of some infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call