Abstract

Complex multicellular organisms require rapid and accurate transmission of information among cells and tissues and tight coordination of distant functions. Electrical signals and resulting intracellular calcium transients, in vertebrates, control contraction of muscle, secretion of hormones, sensation of the environment, processing of information in the brain, and output from the brain to peripheral tissues. In nonexcitable cells, calcium transients signal many key cellular events, including secretion, gene expression, and cell division. In epithelial cells, huge ion fluxes are conducted across tissue boundaries. All of these physiological processes are mediated in part by members of the voltage-gated ion channel protein superfamily. This protein superfamily of 143 members is one of the largest groups of signal transduction proteins, ranking third after the G protein-coupled receptors and the protein kinases in number. Each member of this superfamily contains a similar pore structure, usually covalently attached to regulatory domains that respond to changes in membrane voltage, intracellular signaling molecules, or both. Eight families are included in this protein superfamily-voltage-gated sodium, calcium, and potassium channels; calcium-activated potassium channels; cyclic nucleotide-modulated ion channels; transient receptor potential (TRP) channels; inwardly rectifying potassium channels; and two-pore potassium channels. This article identifies all of the members of this protein superfamily in the human genome, reviews the molecular and evolutionary relations among these ion channels, and describes their functional roles in cell physiology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.