Abstract
The VetMousetrap, a novel device that allows computed tomography (CT) of awake cats and provides a clinically supportive environment, is described. Ten normal cats were used to test the device for ambient internal oxygen, carbon dioxide levels, and temperature. Twenty-two awake normal cats were imaged using a 16-multislice helical CT unit to evaluate dose-equivalent protocols. Two different X-ray tube potentials (kV), 80 and 120, and two different helical pitches, 0.562 and 1.75, were evaluated. The signal intensity of the pulmonary parenchyma (SIlung), signal intensity of background (SIbackgr), contrast, noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were calculated. Three evaluators ranked the images for sharpness of liver margins, motion, helical, and windmill artifacts. CT was successfully completed in 20 of 22 cats. No artifacts directly related to the device were detected. Overall, 75 of 80 (94%) examinations were judged to have absent or minimal motion artifact. A statistically significant difference was found for SNR (P = 0.001) and CNR (P = 0.001) between all protocols. The higher pitch protocols had significantly lower noise and higher SNR and CNR, lower motion artifact but greater helical artifacts. A protocol using 80 kV, 130 mA, 0.5s, and 0.562 pitch with 1.25mm slice thickness, and 0.625 mm slice reconstruction interval is recommended. The VetMousetrap appears to provide the opportunity for diagnostic CT imaging of the thorax of awake cats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.