Abstract

The zebrafish hi472 mutation is caused by a retroviral insertion into the vesicular integral protein-like gene, or zVIPL, a poorly studied lectin implicated in endoplasmic reticulum (ER)-Golgi trafficking. A mutation in the shorter isoform of zVIPL (zVIPL-s) results in a reduction of mechanosensitivity and consequent loss of escape behavior. Here we show that motoneurons and hindbrain reticulospinal neurons, which normally integrate mechanosensory inputs, failed to fire in response to tactile stimuli in hi472 larvae, suggesting a perturbation in sensory function. The hi472 mutant larvae in fact suffered from a severe loss of functional neuromasts of the lateral line mechanosensory system, a reduction of zVIPL labeling in support cells, and a reduction or even a complete loss of hair cells in neuromasts. The Delta-Notch signaling pathway is implicated in cellular differentiation of neuromasts, and we observed an increase in Notch expression in neuromasts of hi472 mutant larvae. Treatment of hi472 mutant larvae with DAPT, an inhibitor of Notch signaling, or overexpression of the Notch ligand deltaB in hi472 mutant blastocysts produced partial rescue of the morphological defects and of the startle response behavior. We conclude that zVIPL-s is a necessary component of Delta-Notch signaling during neuromast development in the lateral line mechanosensory system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call