Abstract

The effect of epitaxial strain on the electrical properties of ferroelectric films has been widely investigated. However, this kind of strain is generally attributed to the substrate clamping constraints and is easily relaxed when the thickness of films is over 100 nm. In this work, a vertically epitaxial strain was introduced into lead-free piezoelectric K0.5Na0.5NbO3 films to improve the electrical properties of ferroelectric films. Two-phase, vertically epitaxial composite KNN-ZnO thin films were grown on the (001) STO substrate using a pulsed laser deposition (PLD) method. The highly (001) preferentially oriented KNN phase and (112¯ 0)-oriented ZnO phase were orderly arranged. Two types of morphologies of “square-like” and “stripe-looking” grains were observed in the surface image. An asymmetric “square” out-of-plane phase hysteresis loop and a “butterfly” displacement loop were exhibited in the KNN phase, whereas the ZnO phase showed a closed phase hysteresis loop and a slim displacement-voltage loop. Two different kinds of polarization behaviors for domains were also observed under applied electric fields, in which the domain of the KNN phase is easily switched to the opposite state, whereas the ZnO phase keeps a stable domain state when applying a DC bias of ±50 V. the vertically epitaxial growth of the KNN-ZnO composited films in this work provides a new way to fabricate complex nanoscale materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.