Abstract

Abstract The vertical structure of meridional eddy heat transport (EHT) of the North Pacific was investigated by analyzing the results from an eddy-resolving ocean general circulation model (OGCM) with a horizontal resolution of , while comparing with previous simulation results and observation data. In particular, the spatial and temporal variation of the effective depth of EHT He was investigated, which is defined by the depth integrated EHT (D-EHT) divided by EHT at the surface. It was found that the annual mean value of He is proportional to the eddy kinetic energy (EKE) level at the surface in general. However, its seasonal variation is controlled by the mixed layer depth (MLD) in the extratropical ocean (>20°N). Examination of the simulated eddy structures reveals that the temperature associated with mesoscale eddies is radically modified by the surface forcing in the mixed layer, while the velocity field is not, and the consequent enhanced misalignment of temperature and velocity anomalies leads to the radical change of EHT across the seasonal thermocline.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call