Abstract

To investigate the vertical distribution of aerosol optical characteristics in Nanyang City, a ground-based dual-wavelength (532 nm and 355 nm) lidar system was developed for aerosol observation at the Nanyang Normal University Station (NYNU) from November 2021 to December 2022. Spatio-temporal dynamics information on vertical distributions of aerosol optical properties during polluted and non-polluted days was obtained. Aerosols were characterized by low altitudes (up to 2 km), thinner layers, and high-altitude (up to 4 km) thick layers during non-polluted and polluted days, with extinction coefficient values of ~0.03 km−1 and ~0.2 km−1, respectively. The mean values of the extinction coefficient at different altitudes (0~5 km) were all about ten-times higher on polluted days (0.04~0.19 km−1) than on non-polluted days (0.004~0.02 km−1). These results indicate that aerosol loadings and variations at different altitudes (0~5 km) were much higher and more prominent on polluted days than non-polluted days. The results show ten-times larger aerosol optical depth (AOD) values (0.4~0.6) on polluted days than on non-polluted days (0.05~0.08). At the same time, AOD values on both polluted and non-polluted days slightly decreased from 19:00 to 05:00, possibly due to dry depositions at nighttime. For the first time, this study established a ground-based lidar remote sensing system to investigate the vertical distribution of atmospheric aerosol optical characteristics in Henan Province. The experimental results can provide scientific dataset support for the local government to prevent and control air pollution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call