Abstract

In this article, I examine the ramified-type theory set out in the first edition of Russell and Whitehead's Principia Mathematica. My starting point is the ‘no loss of generality’ problem: Russell, in the Introduction (Russell, B. and Whitehead, A. N. 1910. Principia Mathematica, Volume I, 1st ed., Cambridge: Cambridge University Press, pp. 53–54), says that one can account for all propositional functions using predicative variables only, that is, dismissing non-predicative variables. That claim is not self-evident at all, hence a problem. The purpose of this article is to clarify Russell's claim and to solve the ‘no loss of generality’ problem. I first remark that the hierarchy of propositional functions calls for a fine-grained conception of ramified types as propositional forms (‘ramif-types’). Then, comparing different important interpretations of Principia’s theory of types, I consider the question as to whether Principia allows for non-predicative propositional functions and variables thereof. I explain how the distinction between the formal system of the theory, on the one hand, and its realizations in different epistemic universes, on the other hand, makes it possible to give us a more satisfactory answer to that question than those given by previous commentators, and, as a consequence, to solve the ‘no loss of generality’ problem. The solution consists in a substitutional semantics for non-predicative variables and non-predicative complex terms, based on an epistemic understanding of the order component of ramified types. The rest of the article then develops that epistemic understanding, adding an original epistemic model theory to the formal system of types. This shows that the universality sought by Russell for logic does not preclude semantical considerations, contrary to what van Heijenoort and Hintikka have claimed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.