Abstract

Normobaric hyperoxia stimulates ventilation (V̇e) in a time- and dose-dependent manner. Whether this occurs via an oxygen (O2)-specific mechanism or secondary to carbon dioxide (CO2) retention at the central chemoreceptors remains unclear. We measured the ventilatory response to hyperoxic CO2 rebreathing with O2 clamped at increasingly higher pressures. We hypothesized that the V̇e versus Pco2 relationship is fixed and independent of Po2. On four occasions, 20 participants (10 F; mean ± SD age: 24 ± 4 yr) performed three repetitions of modified rebreathing in four, randomized, isoxic-hyperoxic conditions: mild: Po2 = 150 mmHg; moderate: Po2 = 200 mmHg; high: Po2 = 300 mmHg; and extreme: Po2 ≈ 700 mmHg. Breath-by-breath V̇e, end-tidal CO2 ([Formula: see text]), and O2 ([Formula: see text]) were measured by pneumotach and gas analyzer. For each rebreathing trial, the [Formula: see text] at which V̇e rose was identified as the ventilatory recruitment threshold (VRT, mmHg), data before VRT provided baseline V̇e (V̇eBSL, L·min-1) and the slope of the response above VRT gave central chemoreflex sensitivity (V̇eS, L·min-1·mmHg-1). For each condition, VRT, V̇eBSL, and V̇eS from like-trials were averaged, and repeated measures ANOVA assessed between-condition differences. There were no effects of [Formula: see text] on V̇eBSL (mild: 7.4 ± 4.2 L·min-1; moderate: 6.9 ± 4.2 L·min-1; high: 6.5 ± 3.7 L·min-1; extreme: 7.5 ± 2.7 L·min-1; P = 0.24), VRT (mild: 42.8 ± 3.2 mmHg; moderate: 42.5 ± 2.7 mmHg; high: 42.3 ± 2.7 mmHg; extreme: 41.8 ± 2.7 mmHg; P = 0.07), or V̇eS (mild: 4.88 ± 2.6 L·min-1·mmHg-1; moderate: 4.76 ± 2.2 L·min-1·mmHg-1; high: 4.81 ± 2.3 L·min-1·mmHg-1; extreme: 4.39 ± 1.9 L·min-1·mmHg-1; P = 0.41). The V̇e-Pco2 relationship is unaltered across a range of mild to extreme Po2. Brief exposure to normobaric hyperoxia may not independently stimulate breathing nor does it alter central chemoreflex sensitivity.NEW & NOTEWORTHY Normobaric hyperoxia stimulates ventilation (V̇e) in a time- and dose-dependent manner. Whether this occurs directly or indirectly through heightened central carbon dioxide pressure (Pco2) or via central chemoreflex sensitization is unclear. Participants who performed modified rebreathing at high oxygen pressures (Po2) of 150, 200, 300, and ≈700 mmHg exhibited no changes to their ventilatory responses to Pco2. Brief exposure to normobaric hyperoxia may not independently stimulate breathing nor does it alter central chemoreflex sensitivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call