Abstract

To study the effects of environmental hypercarbia on ventilation in snakes, particularly the anomalous hyperpnea that is seen when CO(2) is removed from inspired gas mixtures (post-hypercapnic hyperpnea), gas mixtures of varying concentrations of CO(2) were administered to South American rattlesnakes, Crotalus durissus, breathing through an intact respiratory system or via a tracheal cannula by-passing the upper airways. Exposure to environmental hypercarbia at increasing levels, up to 7% CO(2), produced a progressive decrease in breathing frequency and increase in tidal volume. The net result was that total ventilation increased modestly, up to 5% CO(2) and then declined slightly on 7% CO(2). On return to breathing air there was an immediate but transient increase in breathing frequency and a further increase in tidal volume that produced a marked overshoot in ventilation. The magnitude of this post-hypercapnic hyperpnea was proportional to the level of previously inspired CO(2). Administration of CO(2) to the lungs alone produced effects that were identical to administration to both lungs and upper airways and this effect was removed by vagotomy. Administration of CO(2) to the upper airways alone was without effect. Systemic injection of boluses of CO(2)-rich blood produced an immediate increase in both breathing frequency and tidal volume. These data indicate that the post-hypercapnic hyperpnea resulted from the removal of inhibitory inputs from pulmonary receptors and suggest that while the ventilatory response to environmental hypercarbia in this species is a result of conflicting inputs from different receptor groups, this does not include input from upper airway receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.