Abstract

Superlight blockchain clients learn facts about the blockchain state while requiring merely polylogarithmic communication in the total number of blocks. For proof-of-work blockchains, two known constructions exist: Superblock and FlyClient. Unfortunately, none of them can be easily deployed to existing blockchains, as they require consensus changes and at least a soft to implement. In this paper, we investigate how a blockchain can be upgraded to support superblock clients without a soft fork. We show that it is possible to implement the needed changes without modifying the consensus protocol and by requiring only a minority of miners to upgrade, a process termed a fork in the literature. While previous work conjectured that superblock clients can be safely deployed using velvet forks as-is, we show that previous constructions are insecure, and that using velvet techniques to interlink a blockchain can pose insidious security risks. We describe a novel class of attacks, called chain-sewing, which arise in the velvet setting: an adversary can cut-and-paste portions of various chains from independent temporary forks, sewing them together to fool a superlight client into accepting a false claim. We show how previous velvet constructions can be attacked via chain-sewing. Next, we put forth the first provably secure velvet superblock client construction which we show secure against adversaries that are bounded by 1/3 of the upgraded honest miner population. Like non-velvet superlight clients, our approach allows proving generic predicates about chains using infix proofs and as such can be adopted in practice for fast synchronization of transactions and accounts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.