Abstract

A velocity field is found to occur prior to the birth of sunspots or during the rapidly developing phase of new spots. Fraunhofer lines are always shifted redwards in the observed active regions which are situated at various distances from the disk center. The velocity amplitude derived from Na i D1-line, λ 5895.940, amounts to, at maximum, 1.5 km s−1 which is always a little larger than that derived from the weaker line, NI i λ 5892.883. The velocity field disappears when the spot ceases to grow. The lifetime of the velocity is, at least, 1 hr. The velocity field is interpreted in terms of the continuous downward flow in the process of formation of sunspots. Bray and Loughhead (1964) regard the disturbance in the granulation pattern accompanying the birth and growth of sunspot pores as an evidence of the existence of rising loops of magnetic flux. In view of the similarity of the phase of development of active regions and the lifetime in the observations by Bray and Loughhead and by us, we suggest that the velocity field may be a spectroscopic feature accompanying the rising magnetic loops in the photosphere and the chromosphere. We briefly discuss the observed mode of penetration of the magnetic flux to the solar surface before and after the appearance of AFS's.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call