Abstract

A theory of magnetorotational instability (MRI) allowing an equilibrium plasma pressure gradient and nonaxisymmetry of perturbations is developed. This approach reveals that in addition to the Velikhov effect driving the MRI due to negative rotation frequency profile, dΘ2/dr < 0, there is an opposite effect (the anti-Velikhov effect) weakening this driving (here, Θ is the rotation frequency and r is the radial coordinate). It is shown that in addition to the Velikhov mechanism, two new mechanisms of MRI driving are possible, one of which is due to the pressure gradient squared and the other is due to the product of the pressure and density gradients. The analysis includes both the one-fluid magnetohydrodynamic plasma model and the kinetics allowing collisionless effects. In addition to the pure plasma containing ions and electrons, the dusty plasma is considered. The charged dust effect on stability is analyzed using the approximation of immobile dust. In the presence of dust, a term with the electric field appears in the one-fluid equation of plasma motion. This electric field affects the equilibrium plasma rotation and also gives rise to a family of instabilities of the rotating plasma, called the dust-induced rotational instabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.