Abstract

We generalize the standard vehicle routing problem by allowing soft time window and soft traveling time constraints, where both constraints are treated as cost functions. With the proposed generalization, the problem becomes very general. In our algorithm, we use local search to determine the routes of vehicles. After fixing the route of each vehicle, we must determine the optimal start times of services at visited customers. We show that this subproblem is NP-hard when cost functions are general, but can be efficiently solved with dynamic programming when traveling time cost functions are convex even if time window cost functions are non-convex. We deal with the latter situation in the developed iterated local search algorithm. Finally we report computational results on benchmark instances, and confirm the benefits of the proposed generalization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.