Abstract

The integration of climate, satellite, ocean, and biophysical data holds considerable potential for enhancing our drought monitoring and prediction capabilities beyond the tools that currently exist. Improvements in meteorological observations and prediction methods, increased accuracy of seasonal forecasts using oceanic indicators, and advancements in satellite-based remote sensing have greatly enhanced our capability to monitor vegetation conditions and develop better drought early warning and knowledge-based decision support systems. In this paper, a new prediction tool called the Vegetation Outlook (VegOut) is presented. The VegOut integrates climate, oceanic, and satellite-based vegetation indicators and utilizes a regression tree data mining technique to identify historical patterns between drought intensity and vegetation conditions and predict future vegetation conditions based on these patterns at multiple time steps (2-, 4-, and 6-week outlooks). Cross-validation (withholding years) revealed that the seasonal VegOut models had relatively high prediction accuracy. Correlation coefficient (R ) values ranged from 0.94 to 0.98 for 2-week, 0.86 to 0.96 for 4-week, and 0.79 to 0.94 for 6-week predictions. The spatial patterns of predicted vegetation conditions also had relatively strong agreement with the observed patterns from satellite at each of the time steps evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.