Abstract

We obtain a reduction of the vectorial Ribaucour transformation that preserves the class of submanifolds of constant sectional curvature of space forms, which we call the L-transformation. It allows to construct a family of such submanifolds starting with a given one and a vector-valued solution of a system of linear partial differential equations. We prove a decomposition theorem for the L-transformation, which is a far-reaching generalization of the classical permutability formula for the Ribaucour transformation of surfaces of constant curvature in Euclidean three space. As a consequence, we derive a Bianchi-cube theorem, which allows to produce, from k initial scalar L-transforms of a given submanifold of constant curvature, a whole k-dimensional cube all of whose remaining $$2^k-(k+1)$$ vertices are submanifolds with the same constant sectional curvature given by explicit algebraic formulae. We also obtain further reductions, as well as corresponding decomposition and Bianchi-cube theorems, for the classes of n-dimensional flat Lagrangian submanifolds of $${\mathbb {C}}^n$$ and n-dimensional Lagrangian submanifolds with constant curvature c of the complex projective space $${\mathbb {C}}{\mathbb {P}}^n(4c)$$ or the complex hyperbolic space $${\mathbb {C}}{\mathbb {H}}^n(4c)$$ of complex dimension n and constant holomorphic curvature 4c.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.