Abstract

The vectorial competence of Phlebotomus sergenti for 3 Old World species of Leishmania, L. tropica, L. major and L. donovani, was investigated in vivo and by in vitro midgut binding assays using living promastigotes and purified lipophosphoglycan (LPG). P. sergenti consistently showed a high specificity for L. tropica strains, which were able to develop mature, potentially transmissible infections. The loss of infection with L. major and L. donovani correlated with the excretion of the digested bloodmeal. These strains were able to produce sustained infections in the midguts of their appropriate vectors, P. papatasi and P. argentipes, respectively. In in vitro binding assays, a significantly higher number of L. tropica procyclic promastigotes attached to the midgut lining of P. sergenti, compared to those of L. major and L. donovani (P < 0.05). The prediction that the species specificity of midgut attachment is controlled by polymorphic structures on the parasite LPG was supported by the finding that P. sergenti midguts were intensely stained following incubation with purified phosphoglycan (PG) from L. tropica compared with PGs from L. major or L. donovani. The results provide further evidence that LPG structural polymorphisms are driven by the species diversity of molecules present on the sandfly midgut that function as parasite attachment sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.