Abstract

Haemaphysalis longicornis (the longhorned tick), the predominant tick species in China, serves as a vector for a variety of pathogens, and is capable of transmitting the tick-borne encephalitis virus (TBEV), the causative agent of tick-borne encephalitis. However, it is unclear how these ticks transmit TBEV. Langat virus (LGTV), which has a reduced pathogenicity in humans, has been used as a surrogate for TBEV. In this study, we aimed to investigate the vector competence of H. longicornis to transmit LGTV and demonstrate the efficient acquisition and transmission of LGTV between this tick species and mice. LGTV localization was detected in several tick tissues, such as the midgut, salivary glands, and synganglion, using quantitative PCR and immunohistochemical staining with a polyclonal antibody targeting the LGTV envelope protein. We demonstrated the horizontal transmission of LGTV to different developmental stages within the same generation but did not see evidence of vertical transmission. It was interesting to note that we observed mice acting as a bridge, facilitating the transmission of LGTV to neighboring naïve ticks during blood feeding. In conclusion, the virus-vector-host model employed in this study provides valuable insights into the replication and transmission of LGTV throughout its life cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.