Abstract

A flexible and informative vector approach to the problem of physical libration of the rigid Moon has been developed in which three Euler differential equations are supplemented by 12 kinematic ones. A linearized system of equations can be split into an even and odd systems with respect to the reflection in the plane of the lunar equator, and rotational oscillations of the Moon are presented by superposition of librations in longitude and latitude. The former is described by three equations and consists of unrestricted oscillations with a period of T1 = 2.878 Julian years (amplitude of 1.855″) and forced oscillations with periods of T2 = 27.201 days (15.304″), one stellar year (0.008″), half a year (0.115″), and the third of a year (0.0003″) (five harmonics altogether). A zero frequency solution has also been obtained. The effect of the Sun on these oscillations is two orders of magnitude less than that of the Earth. The libration in latitude is presented by five equations and, at pertrubations from the Earth, is described by two harmonics of unrestricted oscillations (T5 ≈ 74.180 Julian years, T6 ≈ 27.347 days) and one harmonic of forced oscillations (T3 = 27.212 days). The motion of the true pole is presented by the same harmonics, with the maximum deviation from the Cassini pole being 45.3″. The fifth (zero) frequency yields a stationary solution with a conic precession of the rotation axis (previously unknown). The third Cassini law has been proved. The amplitudes of unrestricted oscillations have been determined from comparison with observations. For the ratio \( \frac{{\sin I}} {{\sin \left( {I + i} \right)}} \approx 0.2311 \), the theory gives 0.2319, which confirms the adequacy of the approach. Some statements of the previous theory are revised. Poinsot’s method is shown to be irrelevant in describing librations of the Moon. The Moon does not have free (Euler) oscillations; it has oscillations with a period of T5 ≈ 74.180 Julian years rather than T ≈ 148.167 Julian years.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.