Abstract

Endothelial cells respond to mechanical forces exerted by blood flow. Endothelial cell–cell junctions and the sites of endothelial adhesion to the matrix sense and transmit mechanical forces to the cellular cytoskeleton. Here we show that the scaffold protein AmotL2 connects junctional VE-cadherin and actin filaments to the nuclear lamina. AmotL2 is essential for the formation of radial actin filaments and the alignment of endothelial cells, and, in its absence, nuclear integrity and positioning are altered. Molecular analysis demonstrated that VE-cadherin binds to AmotL2 and actin, resulting in a cascade that transmits extracellular mechanical signals to the nuclear membrane. Furthermore, the endothelial deficit of AmotL2 in mice fed normal diet provoked a pro-inflammatory response and abdominal aortic aneurysms (AAAs). Transcriptome analysis of human AAA samples revealed a negative correlation between AmotL2 and inflammation of the aortic intima. These findings offer insight into the link between junctional mechanotransduction and vascular disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.