Abstract

We give upper bounds on the Vapnik-Chervonenkis dimension and pseudodimension of two-layer neural networks that use the standard sigmoid function or radial basis function and have inputs from {−D, …,D}n. In Valiant's probably approximately correct (pac) learning framework for pattern classification, and in Haussler's generalization of this framework to nonlinear regression, the results imply that the number of training examples necessary for satisfactory learning performance grows no more rapidly than W log (WD), where W is the number of weights. The previous best bound for these networks was O(W4).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.