Abstract

Vascular-disrupting agents like combretastatin (CA-4-P), used to attenuate tumor blood flow in vivo, exert anti-mitotic and anti-migratory effects on endothelial cells in vitro. We tested whether anti-vascular or anti-angiogenic effects of CA-4-P are evident with physiological angiogenesis in skeletal muscle (EDL) due to sustained hyperemia (intraluminal splitting) and chronic muscle overload (abluminal sprouting). CA-4-P was given i.v. (25 mg/kg on alternate days for 14 days) to mice subjected to angiogenic stimuli (prazosin or synergist extirpation). The responses of femoral artery blood flow as well as capillarity, capillary ultrastructure, and levels of Rho GTPase were measured. Blood flow was unaffected in the sprouting angiotype, but decreased in the splitting angiotype, by CA-4-P. In contrast, CA-4-P attenuated the capillarity increase in both models, associated with reduced lamellipodia and filopodia formation. Muscle overload, but not hyperemia, was accompanied by an increase in Rho GTPase with CA-4-P. CA-4-P impaired the angiogenic response in both experimental models. This inhibitory effect was associated with a lower increase in femoral blood flow in splitting, whereas sprouting angiogenesis was accompanied by higher Rho activity consistent with the interruption of actin polymerization. Thus, CA-4-P may exert context-dependent anti-vascular and anti-angiogenic effects in vivo under physiological conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.