Abstract

Abstract Graphite is a widely used material in nuclear reactors, especially in high temperature gascooled reactors (HTRs), in which it plays three main roles: moderator, reflector and structure material. Irradiation-induced creep has a significant impact on the behavior of nuclear graphite as graphite is used in high temperature and neutron irradiation environments. Thus the creep coefficient becomes a key factor in stress analysis and lifetime prediction of nuclear graphite. Numerous creep models have been established, including the visco-elastic model, UK model, and Kennedy model. A Fortran code based on user subroutines of MSC.MARC was developed in INET in order to perform three-dimensional finite element analysis of irradiation behavior of the graphite components for HTRs in 2008, and the creep model used is for the visco-elastic model only. Recently the code has been updated and can be applied to two other models—the UK model and the Kennedy model. In the present study, all three models were used for calculations in the temperature range of 280–450 °C and the results are contrasted. The associated constitutive law for the simulation of irradiated graphite covering properties, dimensional changes, and creep is also briefly reviewed in this paper. It is shown that the trends of stresses and life prediction of the three models are the same, but in most cases the Kennedy model gives the most conservative results while the UK model gives the least conservative results. Additionally, the influence of the creep strain ratio is limited, while the absence of primary creep strain leads to a great increase of failure probability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.