Abstract

Abstract In the study of the variety of nilpotent elements in a Lie algebra, Premet conjectured that this variety is irreducible for any finite dimensional restricted Lie algebra. In this paper, with the assumption that the ground field is algebraically closed of characteristic p > 3, we confirm this conjecture for the Lie algebras of Cartan type S˜ n and Sn . Moreover, we show that the variety of nilpotent elements in Sn is a complete intersection. Motivated by the proof of the irreducibility, we describe explicitly the ring of invariant polynomial functions on Sn .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.