Abstract

We isolated two recombinant baculoviruses each of which expresses a varicella-zoster virus (VZV) homolog of one ofthe seven herpes simplex virus type 1 (HSV-1) genes required for DNA replication. We performed transient origin-dependent DNA replication assays in insect cells in which we substituted a baculovirus which expresses a VZV protein for a baculovirus which expresses its HSV homolog. VZV gene 51 protein was found to be able to support origin-dependent DNA synthesis when it was substituted for UL9, the HSV-1 origin-binding protein (01313). This occurred whether an HSV-1 or a VZV origin-containing plasmid was used in the assay. These results suggest that VZV gene 51 protein is able to interact with the HSV replication machinery, and in light of the extensive structural divergence of these proteins, it suggests that initiation of VZV and HSV-1 DNA synthesis may involve a limited number of interactions between the OBP and other replication factors. Substitution of infected-cell protein 8 (ICP8), the major single-stranded DNA-binding protein of HSV-1, with VZV gene 29 protein, however, did not result in amplification of plasmids containing either an HSV-1 or a VZV origin. In the absence of ICP8, addition of both VZV gene 51 protein and gene 29 protein was also negative for origin-dependent replication whether or not UL9 was present. Although demonstration that our baculovirus-expressed VZV gene 29 protein is functional for DNA replication will await development of a VZV replication system, our results suggest that VZV gene 29 protein is unable to interact functionally with one or more of the HSV replication proteins. This approach should contribute to efforts to define the interactions among the alphaherpesvirus DNA replication proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call