Abstract
AbstractIn the field of state space estimation and data assimilation, the Kalman filter (KF) and the extended Kalman filter (EKF) are among the most reliable methods used. However, KF and EKF require the storage of, and operations with, matrices of size n×n, where n is the size of the state space. Furthermore, both methods include inversion operations for m×m matrices, where m is the size of the observation space. Thus, KF methods become impractical as the dimension of the system increases. In this paper, we introduce a variational Kalman filter (VKF) method to provide a low storage, and computationally efficient, approximation of the KF and EKF methods. Furthermore, we introduce a variational Kalman smoother (VKS) method to approximate the fixed‐lag Kalman smoother (FLKS) method. Instead of using the KF formulae, we solve the underlying maximum a posteriori optimization problem using the limited memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) method. Moreover, the LBFGS optimization method is used to obtain a low storage approximation of state estimate covariances and prediction error covariances. A detailed description of the VKF and VKS methods with LBFGS is given. The methodology is tested on linear and nonlinear test examples. The simulated results of the VKF method are presented and compared with KF and EKF, respectively. The convergence of BFGS/LBFGS methods is tested and demonstrated numerically. Copyright © 2009 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Fluids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.