Abstract

In this paper we investigate a variational discretization for the class of mechanical systems in presence of symmetries described by the action of a Lie group which reduces the phase space to a (non-trivial) principal bundle. By introducing a discrete connection we are able to obtain the discrete constrained higher-order Lagrange-Poincaré equations. These equations describe the dynamics of a constrained Lagrangian system when the Lagrangian function and the constraints depend on higher-order derivatives such as the acceleration, jerk or jounces. The equations, under some mild regularity conditions, determine a well defined (local) flow which can be used to define a numerical scheme to integrate the constrained higher-order Lagrange-Poincaré equations.Optimal control problems for underactuated mechanical systems can be viewed as higher-order constrained variational problems. We study how a variational discretization can be used in the construction of variational integrators for optimal control of underactuated mechanical systems where control inputs act soley on the base manifold of a principal bundle (the shape space). Examples include the energy minimum control of an electron in a magnetic field and two coupled rigid bodies attached at a common center of mass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call