Abstract

The spatial and temporal variations of turbulent diapycnal mixing along 18°N in the South China Sea (SCS) are estimated by a fine-scale parameterization method based on strain, which is obtained from CTD measurements in yearly September from 2004 to 2010. The section mean diffusivity can reach ~10–4 m2/s, which is an order of magnitude larger than the value in the open ocean. Both internal tides and wind-generated near-inertial internal waves play an important role in furnishing the diapycnal mixing here. The former dominates the diapycnal mixing in the deep ocean and makes nonnegligible contribution in the upper ocean, leading to enhanced diapycnal mixing throughout the water column over rough topography. In contrast, the influence of the wind-induced near-inertial internal wave is mainly confined to the upper ocean. Over both flat and rough bathymetries, the diapycnal diffusivity has a growth trend from 2005 to 2010 in the upper 700 m, which results from the increase of wind work on the near-inertial motions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call