Abstract

The stellar initial mass function (IMF) characterizes the mass distribution of newly formed stars in various cosmic environments, serving as a fundamental assumption in astrophysical research. Recent findings challenge the prevalent notion of a universal and static IMF, proposing instead that the IMF’s shape is contingent upon the star formation environment. In this study, we analyze the galaxy-wide variation in the IMF for low-mass stars in both dwarf and massive galaxies with diverse observational methods. Despite systematic discrepancies between different approaches, an IMF model with a metallicity-dependent slope for the low-mass stars aligns with the majority of observations, indicating a high degree of uniformity in the star formation processes across the Universe. We also emphasize the need for a more comprehensive understanding of the variation in the low-mass IMF, considering measurement biases and factors beyond metallicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.