Abstract

Abstract We have conducted an extensive X-ray spectral variability study of a sample of 20 Compton-thin type II galaxies using broadband spectra from XMM-Newton, Chandra, and Suzaku. The aim is to study the variability of the neutral intrinsic X-ray obscuration along the line of sight and investigate the properties and location of the dominant component of the X-ray-obscuring gas. The observations are sensitive to absorption columns of ∼ 1020.5–24 cm−2 of fully and partially covering neutral and/or lowly ionized gas on timescales spanning days to well over a decade. We detected variability in the column density of the full-covering absorber in 7/20 sources, on timescales of months to years, indicating a component of compact-scale X-ray-obscuring gas lying along the line of sight of each of these objects. Our results imply that torus models incorporating clouds or over-dense regions should account for line-of-sight column densities as low as ∼a few ×1021 cm−2. However, 13/20 sources yielded no detection of significant variability in the full-covering obscurer, with upper limits of ΔN H spanning 1021–23 cm−2. The dominant absorbing media in these systems could be distant, such as kiloparsec-scale dusty structures associated with the host galaxy, or a homogeneous medium along the line of sight. Thus, we find that overall, strong variability in full-covering obscurers is not highly prevalent in Compton-thin type IIs, at least for our sample, in contrast to previous results in the literature. Finally, 11/20 sources required a partial-covering, obscuring component in all or some of their observations, consistent with clumpy near-Compton-thick compact-scale gas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.