Abstract

Previous investigations have suggested considerable inter-individual variability in the time course pattern of net joint moments during normal human walking, although the limited sample sizes precluded statistical analyses. The purpose of the present study was to obtain joint moment patterns from a group of normal subjects and to test whether or not the expected differences would prove to be statistically significant.Fifteen healthy male subjects were recorded on video while they walked across two force platforms. Ten kinematic and kinetic parameters were selected and input to a statistical cluster analysis to determine whether or not the 15 subjects could be divided into different ‘families’ (clusters) of walking strategy.The net joint moments showed a variability corroborating earlier reports. The cluster analysis showed that the 15 subjects could be grouped into two clusters of 5 and 10 subjects, respectively. Five parameters differed significantly, so the group of 5 subjects was characterized by (1) a higher peak knee joint extensor moment, (2) more flexed knee joint angle at heel strike, (3) during the whole stance phase, (4) lower peak knee joint flexor moment and (5) lower ankle joint angle at flat foot position.Calculation of bone-on-bone forces in the knee joint showed a value of 64N/kg body weight in the K+ group and 55N/kg in the K− group (p<0.05). It is unknown if differences of similar magnitude contribute to early joint degeneration in some individuals while not in others.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.