Abstract

Varying diffusion curvature (VDC) MRI is an emerging diffusion-weighted imaging (DWI) technique that can capture non-Gaussian diffusion behavior and reflect tissue heterogeneity. However, its clinical utility has hardly been evaluated. We aimed to investigate the value of the VDC technique in noninvasively assessing microvascular invasion (MVI) in hepatocellular carcinoma (HCC). 74 patients with HCCs, including 39 MVI-positive and 35 MVI-negative HCCs were included into this prospective study. Quantitative metrics between subgroups, clinical risk factors, as well as diagnostic performance were evaluated. The power analysis was also carried out to determine the statistical power. MVI-positive HCCs exhibited significantly higher VDC-derived structural heterogeneity measure, D1 (0.680 ± 0.100 × 10-3 vs 0.572 ± 0.148 × 10-3mm2/s, p = 0.001) and lower apparent diffusion coefficient (ADC) (1.350 ± 0.166 × 10-3 vs 1.471 ± 0.322 × 10-3mm2/s, p = 0.0495) compared to MVI-negative HCCs. No statistical significance was observed for VDC-derived diffusion coefficient, D0 between the subgroups (p = 0.562). Tumor size (odds ratio (OR) = 1.242) and alpha-fetoprotein (AFP) (OR = 2.527) were identified as risk factors for MVI. A predictive nomogram was constructed based on D1, ADC, tumor size, and AFP, which exhibited the highest diagnostic accuracy (AUC = 0.817), followed by D1 (AUC = 0.753) and ADC (AUC = 0.647). The diagnostic performance of the nomogram-based model was also validated by the calibration curve and decision curve. VDC can aid in the noninvasive and preoperative diagnosis of HCC with MVI, which may result in the clinical benefit in terms of prognostic prediction and clinical decision-making.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call