Abstract

Neurosonography (NSG) is a readily available non-invasive radiological examination technique that assesses brain damage in neonates who experienced perinatal hypoxia. The aim of the study was to determine the relationship between hypoxic-ischemic (HI) brain injuries in full-term neonates detected during ultrasonography and mental and neuromotor development outcomes at an early school age. We evaluated 8–9-year-old children (n = 32) who had experienced hypoxia at birth with mild to moderate hypoxic-ischemic encephalopathy (HIE) and hadn’t undergone therapeutic hypothermia. The control group consisted of 8–9-year-old children (n = 16) who were born healthy. During the first five days of life, the newborns underwent cerebral ultrasonography. The HIE stage was evaluated according to the Sarnat and Sarnat scale. Neuromotor and neurological outcomes were assessed using the Gross Motor Function Classification System, the Health Utilities Index (HUI) questionnaire, the Wechsler Intelligence Scale for Children WISC-III, and structured neurological examination. In the case of moderate brain edema and/or thalamus and/or basal ganglion injuries along with cerebellum and brainstem (E/T/BG/C/B) injuries compared to other injuries, the following abnormalities were statistically significantly more common: hearing disorders (100%, p = 0.03), cerebellar dysfunction (60%, p = 0.02), epilepsy (60%, p = 0.01), a lower Working Memory Index (median, 82.0, p = 0.015). In case of moderate brain swelling (edema) and thalamus and/or basal ganglion (E/T/BG) injuries, the sensitivity and specificity of the ultrasound examination when predicting epilepsy, hearing disorders, lower full IQ, and the Perceptual Organization Index were 100%. Neurosonography helps predict the outcomes of mental and neuromotor development at an early school age in full-term neonates who experienced perinatal asphyxia/hypoxia. Moderate hypoxic-ischemic brain changes detected during ultrasonography were statistically significantly associated with hearing disorders, cerebellar dysfunction, epilepsy, and a lower Working Memory Index in children at an early school age.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call