Abstract

SummaryIn ball sports, we are taught to follow through, despite the inability of events after contact or release to influence the outcome [1, 2]. Here we show that the specific motor memory active at any given moment critically depends on the movement that will be made in the near future. We demonstrate that associating a different follow-through movement with two motor skills that normally interfere [3–7] allows them to be learned simultaneously, suggesting that distinct future actions activate separate motor memories. This implies that when learning a skill, a variable follow-through would activate multiple motor memories across practice, whereas a consistent follow-through would activate a single motor memory, resulting in faster learning. We confirm this prediction and show that such follow-through effects influence adaptation over time periods associated with real-world skill learning. Overall, our results indicate that movements made in the immediate future influence the current active motor memory. This suggests that there is a critical time period both before [8] and after the current movement that determines motor memory activation and controls learning.

Highlights

  • Participants grasped the handle of a robotic interface (Figure S1) and made a reaching movement through a perturbing force field to a central target, followed immediately by a second unperturbed, followthrough movement to one of two possible final targets (Figure 1A, follow-through; see the Supplemental Experimental Procedures for full details)

  • For a motor skill to be learned over a prolonged period of time, the motor memory of the skill must be stored, protected from interference by intervening tasks, and reactivated for modification when the skill is practiced

  • Given the widespread notion of the importance of a consistent follow-through in many sports [1, 2], here we examine whether the currently active motor memory might depend on the movement that we are going to make in the near future

Read more

Summary

Introduction

Participants grasped the handle of a robotic interface (Figure S1) and made a reaching movement (in one of four directions) through a perturbing force field to a central target, followed immediately by a second unperturbed, followthrough movement to one of two possible final targets (Figure 1A, follow-through; see the Supplemental Experimental Procedures for full details). When a second group of participants were presented with the final target, which again was predictive of the field direction, but did not follow-through to the target (Figure 1A, no follow-through), there was substantial interference between the motor skills, as expected [8, 12, 13].

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.