Abstract
Remedial action schemes (RAS) are often seen as an inexpensive way to relieve contingency-related grid congestion without building new transmission infrastructure. However, RAS settings often remain fixed during real-time operation and do not adapt to variation in operating conditions due to renewable and distributed generation. This lack of adaptability may cause suboptimal settings and possibly insecure operations. To assess the value of allowing RAS settings to vary real time and the benefit of considering multiple load and generation scenarios, we propose a mixed integer optimization framework which identifies optimal RAS actions while incorporating multiple load and renewable energy scenarios. We also propose an iterative algorithm that efficiently solves the optimization problem, leveraging the fact that only a few scenarios and contingencies are binding at optimality. We demonstrate the benefits of (i) updating RAS more frequently and (ii) considering multiple load scenarios by performing case studies on the RTS-GMLC system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.