Abstract

Since the symptoms of early gastric cancer patients are not obvious, the majority of new gastric cancer cases are progressive gastric cancer every year. In this paper, we applied nanomedicine technology to design and prepare multifunctional nanoparticles for the diagnosis and treatment of gastric cancer. Through targeted imaging of gastric cancer, combined with phototherapy and the prepared nanoprobes are applied to the ectopic transplantation tumor model of gastric cancer. Meanwhile, a fluorescent microsensor based on graphene oxide and deoxyribonuclease is constructed in order to realize the rapid detection of gastric cancer exosomes. The near-infrared multifunctional nanoprobe is combined with artificial intelligence microsensor technology and applied to the molecular diagnosis of gastric cancer. The results shows that the P-P-I-M+ laser irradiation group has the highest fluorescence intensity and its average fluorescence intensity is 2.04 times higher than that of the P-P-I+ laser irradiation group. The relative cell viability of P-P-M+ laser irradiation group, P-P-I+ laser irradiation group and P-P-I-M+ laser irradiation group are 62.5%, 41.9% and 19.3%, respectively. Therefore, the method in this paper can reduce the non-specific toxicity to other organs as well as exert the effect of combining the diagnosis and treatment of gastric cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.