Abstract

ObjectivesTo explore and compare the performance of LI-RADS® and radiomics from multiparametric MRI in predicting microvascular invasion (MVI) preoperatively in patients with solitary hepatocellular carcinoma (HCC)<5 cm. MethodsWe enrolled 143 patients with pathologically proven HCC and randomly stratified them into training (n=100) and internal validation (n=43) cohorts. Besides, 53 patients were enrolled to constitute an independent test cohort. Clinical factors and imaging features, including LI-RADS and three other features (non-smooth margin, incomplete capsule, and two-trait predictor of venous invasion), were reviewed and analyzed. Radiomic features from 4 MRI sequences were extracted. The independent clinic-imaging (clinical) and radiomics model for MVI-prediction were constructed by logistic regression and AdaBoost respectively. And the clinic-radiomics combined model was further constructed by logistic regression. We assessed the model discrimination, calibration and clinical usefulness by using the area under the receiver operating characteristic curve (AUC), calibration curve, and decision-curve analysis respectively. ResultsIncomplete tumor capsule, corona enhancement, and radiomic features were related to MVI in solitary HCC<5 cm. The clinical model achieved AUC of 0.694/0.661 (training/internal validation). The single-sequence-based radiomic model’s AUCs were 0.753–0.843/0.698–0.767 (training/internal validation). The combination model exhibited superior diagnostic performance to the clinical model (AUC: 0.895/0.848 [training/ internal validation]) and yielded an AUC of 0.858 in an independent test cohort. ConclusionsIncomplete tumor capsule and corona enhancement on preoperative MRI were significantly related to MVI in solitary HCC<5 cm. Multiple-sequence radiomic features potentially improve MVI-prediction-model performance, which could potentially help determining HCC’s appropriate therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.