Abstract

In the last five years the electric grid worldwide has seen increasing amounts of installed wind generation capacity. Over the last five years, North America (USA and Canada) has witnessed wind capacity grow at an annual rate of over 30%. At the same time, increasing investments in smart grid technologies have enabled improvements in energy products such as Demand Response (DR). The utility industry, system operators and regulators are investing heavily to understand and determine the impacts of increasing wind penetration on the power system. As explored below, an often neglected, but important point of interest to the authors has been the effect of increased cycling of large fossil, formerly base loaded power plants due to increasing penetration of variable wind or solar power. Various types of DR programs have been implemented by utilities and system operators and these DR programs may be classified based on the time it takes to call upon a DR event or the energy market that the programs are allowed to participate within. Hence, we may have a “slow” DR that participates in a Day-Ahead market and the events are called upon well in advance. On the other hand, “fast” DR programs would participate in Real-Time and Ancillary Services markets. DR from a power dispatch perspective can be considered a “virtual power plant” providing energy, ancillary service and capacity in energy markets. Energy benefits of DR have been explored extensively, especially in terms of reduced fuel costs due to reduction in demand. In this paper we explore the conceptual use and value of DR in providing benefits associated with reduced damage to a fleet of fossil-fueled power plants if it is used to reduce startups and/or load following/cycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.