Abstract

Cognitive load theory (CLT) has been widely used to help understand the process of learning and to design teaching interventions. The Cognitive Load Scale (CLS) developed by Leppink and colleagues has emerged as one of the most validated and widely used self-report measures of intrinsic load (IL), extraneous load (EL), and germane load (GL). In this paper we investigated an expansion of the CLS by using a multidimensional conceptualization of the EL construct that is relevant for physical and online teaching environments. The Multidimensional Cognitive Load Scale for Physical and Online Lectures (MCLS-POL) goes beyond the CLS's operationalization of EL by expanding the EL component which originally included factors related to instructions/explanations with sub-dimensions including EL stemming from noises, and EL stemming from both media and devices within the environment. Through three studies, we investigated the reliability, and internal and external validity of the MCLS-POL using the Partial Credit Model, Confirmatory Factor Analysis, and differences between students either attending a lecture physically or online (Study 2 and 3). The results of Study 1 (N = 250) provide initial evidence for the validity and reliability of the MCLS-POL within a higher education sample, but also highlighted several potential improvements which could be made to the measure. These changes were made before re-evaluating the validity and reliability of the measure in a new sample of higher education psychology students (N = 140, Study 2), and psychological testing students (N = 119, Study 3). Together the studies provide evidence for a multidimensional conceptualization cognitive load and provide evidence of the validity, reliability, and sensitivity of the MCLS-POL and provide suggestions for future research directions.

Highlights

  • Cognitive load theory (CLT) posits that the strain put on working memory by the learning content plays a key role in whether or not the student succeeds in learning (Sweller et al, 2011a)

  • The analyses of Extraneous Load (EL) instructions scale exhibited evidence of Differential Item Functioning (DIF) in relation to course for item 1, such that it was easier for students of psychological testing to endorse the statement “The instructions and/or explanations during the activity were very unclear” than for students of educational psychology, despite similar levels of EL related to instructions

  • For the extraneous load scale in relation to devices, we found evidence of DIF in relation to age for item 2, meaning it was easier for younger students to endorse the statement: “Messages and notifications from my phone/computer made learning unclear.” and local dependence between item 1 “My activities on my phone/computer made it difficult to focus on the learning content,” and item 2 “Messages and notifications from my phone/computer made learning unclear.”

Read more

Summary

Introduction

Cognitive load theory (CLT) posits that the strain put on working memory by the learning content plays a key role in whether or not the student succeeds in learning (Sweller et al, 2011a). Working memory becomes a form of bottleneck that requires instructors to design learning content in a way that can maximize the amount of information that is stored in the long term memory. Extraneous Load (EL) which consist of non-intrinsic parts of the learning situation i.e., non-relevant information presented together with relevant information or inefficient instructional design, which will unnecessarily strain the working memory of the student (Sweller et al, 2011b). Others argue that it makes sense to separate GL from IL and describe how GL is tied to actual effort that leads to a better understanding of the content (e.g., Klepsch et al, 2017), a recent article by Klepsch and Seufert argues that IL stems from a passive experience of a task, opposite GL that stems from an active experience of a task (Klepsch and Seufert, 2021)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.