Abstract

Relativistic density functional theory calculations have been conducted to examine the effect of atomic under-coordination. The calculated results agree exceedingly well with experimental observations: skin-depth bond contraction, chain end stats polarization, potential well depression, core level shift, and the valence charge polarization of gold nanostructures. Consistency between calculations and experimental observations affirms the prediction of the bond-order-length-strength (BOLS) correlation theory [Sun CQ, Phys Rev B 69, 045105 (2004)], asserting that the under-coordinated surface atoms are indeed associated with local strain, quantum trap depression, charge densification and valence charge polarization and that the locally polarized and pinned electrons are responsible for the metal-insulator transition and magnetism present of gold nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.